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Abstract

Based on the data envelopment analysis (DEA) theory, the optimal pathway of metabolic reaction netw oks in biochem-

ical systems is studied. After calculating the mixed-integer linear programming (M ILP) model given by Bailey et al. twice the decision

making units (DM U) and the prediction model of DEA are constructed, where the inputs are levels of manipulated parameters (enzyme)

and outputs are concentrations of metabolites. When the metabolic netw orks are reconstructed. the data are obtained by calculating MILP

framew ork twice and the optimal kevels of the manipulated parameter at different regular loops are predicted, thus simplifying the calcula-

tions of Baiky’ s

Keywords:

There are over one thousand kinds of enzymes in
cells which cataly ze various reactions and form a com-
plex reaction network. Due to the development of
biochemistry and cellular physiology, researchers get
to know the decomposition and synthesis pathways of
various components in cells and have a full under-
standing of controlling and regulation of these en-
zymes and their regulators. A large number of data of
enzyme’ s dynamics have been accumulated through
in vitro measurements. On this basis, through the
quantity analysis of the metabolic networks and de-
scription of the flux distribution of various metabolic
pathways at different statuses in cells, we can take
some improved measures and regulate their distribu-
tions and get more interesting products. Commonly,
the used methods include metabolic flux analysis
(MFA), metabolic control analysis (M CA) and bio-
chemical system theory (BST)'".

BST is an analytical method for metabolic net-
work developed in the 1970’ s. On the basis of the

S . 2.3
optimization theory, Voit et al.l”?

found out one
network architecture which optimizes the object func-
tion. First of all, the relation between the reaction
rates and their parameters, e.g. concentrations of en-
zyme, substrate, and reagents is set up. Then the
variation range of the constraints is specified. The ob-
jective function is the maximization of rate of produc-
tion. By resolving the optimization problem (S-sys-

tem model ) we can get the network architecture with

metabolic reaction networks MILP, the prediction model of DEA. efficient DMU.

its optimal object.

Introducing the constraints containing binary
variables in S-system model we can get the mixed-in-
These
newly introduced constraints contain changes of a va-

teger linear programming (MILP) model 4 .

riety of enzyme regulatory architectures, reducing the
amount of calculations. However, when reaction
pathw ays become more complex, we need to solve the
MILP model many times. And the model becomes
very complicated as a result of introducing the new
constraints. It is very difficult to solve the problem
using linear programming method, and the optimal
production rate cannot be predicted. In order to get
the optimal network architecture, this article predicts
the production rate under different enzyme regular
structures through utilizing the data envelopment
analysis (DEA) and objective programming. Tt is
based on the result of resolving the MILP twice and
the optimization of the metabolic netw ork.

1 Mixed-integer linear model

We will consider that every reaction can be mod-
ulated by any of the two metabolites, X and X,
which will either inhibit or activate a reaction. This
consideration resultsin the postulation of 12 regulato-

ry loops (Fig. ).

Four manipulated variables are considered: the
amount of the enzymes, P, P2, and P3, that cat-
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Fig. 1. A linear pathway with feedback inhibition. Bold solid
lires denote reaction steps, dotted lines denote dependency on the
corresponding parameters P;, dashed lines denote inhibition, and

thin solid lines denote activation.

alyze the three reactions, and the amount of the effec-
tor, P4, that activates the first and the second reac-
tions of the pathway. Moreover, for each loop we
6 altemative levels of regulatory

0.5,0.5 —0. 1,
We will allow only two regula-

will consider N g=
strength and type of regulation: {—
0.1, —0.01, 0.01}.
tory loops to be active in the pathw ay .

Consider the manipulated parameter levels and
the regulatory structures that should be changed to
maximize the final product concentration X> when the

following conditions are satisfied:
(i) The system is at a steady state;
(i) X1, «<500;
(i) V3<10; and

(iv) for the three enzy mes, only overexpression
is considered —that is, PL=1(L=1,2, 3,4), and up

to 10 times of their reference value.

We will introduce the binary variables z, and

the parameters €, with

m=1, - Nreg?
= 19 Tty errb
j: I = Nmew

where Nieg is the number of the alternative strength
and types of regulation for each regulatory loop in the
superstructure, and N n and N pe are the numbers of
the reactions and metabolites, respectively, in the
metabolic network. In this example, we have Nrez=
6, Nrvw=3 and Nye =2. And for the binary vari-

ables zj, and the parameters &, we let

(i) zj1 and zj2 be equal to 1, if reaction i is in-
hibited with strength &;1= —0.5 or activated with
strength €2=0.5, from metabolite j;

(i) zy3 and z i be equal to 1, if reaction i is in-
hibited with strength &;3= —0. 1 or activated with

strength €;4=0.1, from metabolite j;

(iii) zi5 and z 6 be equal to 1, if reaction i is
inhibited with strength €;5= — 0. 01 or activated
with strength €j6=0.01, from metabolite j.

Then the S-system representation of the pathw ay
is obtained ¥ .

We can introduce a set of variables:

qu—'_qL:ln(PL)y L:19273949

where ¢, denotes the logarithm of the reference value
of the parameter L, and qr denotes the logarithm of
the factor by which the reference value is multiplied

to give the value pr. In the example studied here

gr = Inl =0
and
qL — In1 = 0.

Moreover, we introduce a set of binary vari-
ables, wy, for which we will have

q; T wigr =In(PL), L=1,23,4

and zi2:

+ ‘8
v1:X 2 12PP4,

+ . .
where v is net rate laws describing the processes

that increase the concentration of metabolite 1, and
212 1s kinetic orders.

Atlast, we introduce variables ;s 1, Sijm, for
which we will have

yj = Inxj,
L= WwLgL,
Sijm = ZijmEijmVs
These variables will be used in the de-
scription of the steady-state equations after the loga-

respectively.

rithmic transformation. Thus we can write the MILP
model .

max )2
s. t.

6 2
— ZZSU,,,+O 5y1+22szjm

m:l‘/:l m=1 j=

—q— tn+ g+ 2= 1n1/0.02),

0. 5y1 + 2 ZSZJm Y2 2 stm + (12

m=1 j=1 m=1 j=1
-+ t2+26]4+ 2t4— q3 — 3= ln(2/0.02),
y1 << In (500,
—s12+q1+t1+2q4+2t4 In(10),
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P] > 19
P2> 17
P3> 17
. L U
SiimYj — Sijm + min (y] Sijms Vj€jm )Zijm

. L U
2 mm (yjeijms Y €ijm)

Sijmyj — Sijm +max(y5€ym, y;JEijm )Z ijm l =123
< max(ve; . vles ) J= b2
< max\y;&ms Y ; Ejm m=1 -6

. L U
Zigmmin (Y €ims ¥ ; € ) — Sijm << 0

L U
sijm — zigmmax (y; €jms y;€jm ) << 0
L L
q— ttwg = q,
U U
q— ttwg < q,

p—
-

e d
wzq%— 1< 0

t— w;q?<0
wit wat wit+ ws<< 1,

iiizym =12,

m=1 j=1 i=1

6
Dl <1G=123=12).
m=1

The best solution is found for this problem:

x1= 500, x2=125;
Pr=1(L=1,3,4), P2=2.236;
Vi— 1;

z311= zn1=1.

Including the additional constraint in the model
and solving the problem again, we find the second
best solution:

x1=500, x2=111.8;
Pi=1(L=13,4, P,=10;
vi= 10;

z3ln=za2=1.

As indicated by the results above, after the con-
straint containing binary variable is introduced, we
include eight more linear constraints that will guaran-
tee the consistency between wigr and trs zjm€ijmVv;
and sijm, and thus the model becomes more compli-
cated and the degree of difficulty in solving the model
is very high. Therefore, after getting the two results
above, we do not introduce the MILP model again,
but analyze the new regulatory structure and predict
the optimal concentration based on the given data for
the purpose of reducing the steps of iteration and con-
straint conditions.

2 DEA model and its efficiency
2.1 Fundamental definition

Definition 1. The production possible set is
{ (x. »)| output vector y can be obtained from input
X}

In this paper, when four enzyme expression lev-
els are P, P2, P3, P4, respectively, the obtainable
intermediate product concentration is x1 and the final
product concentration is X2.

Definition 2. If (xj, yj) is an observed activity,
then the reference set is 7= {(x1, y1)s =% (xu» yu)}.

Definition 3. When the relative increment per-
centage of input is more than that of the correspond-
ing output, the corresponding DM U of (x, y) is de-
creasing returns-to-scale; when the relative increment
percentage of input is less than that of corresponding
output, the corresponding DM U of (x, y ) is increas-
ing returns-to-scale; when the relative increment per-
centage of input is equal to that of corresponding out-
put the corresponding DM U of (x, y) is constant
returns-to-scale.

2.2 Fundamental DEA model

Consider n DMU; (1<< j << n). Their corre-
sponding input vectors and output vectors are
X — (xlj, Tty xm‘,‘)T> 0’
- T
i = i s yg) = 0
respectively . The intensity level of inputs and outputs

j =1, - ns
j = 1, EER /)

are
v=(vi, =5 vp)!

and u= Cups s u)'

respectively. The calculating of the intensity level of

inputs and outputs is based on certain laws.

s
T 2 UL ki
j k=1

Definition 4. 7= 0= v j=1, -\

Yo S
VjXij

n, is called the evaluation factor of efficiency of the

jth DMU.

The larger value of #; indicates that more out-

puts are obtainable from few er inputs.

Using Charnes-Cooper transformation, based on
the principle of duality of linear programming, we

can, construct, a dual model ¥ | that has the non-
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Archimedes infinite small value €:

min[ 0 —e(e's +e's )] = Vb,
D hx+s = bxo,
Jj=1

g }
(De)s.t. ; Ay —§ = yos

>\j>oaj: 1, -5 n,
S7>07S)>0.

The purpose of model (D:) is to get the maxi-
mum outputs with minimum inputs. When 0= 1,
s =0 s =0, (x0, yo) is efficient DM U; when
01, (xos yo) is inefficient DM U of the DEA mod-
el. We can still produce the same outputs yo while

consuming fewer inputs.

The limitation of this model is that it is not suit-
able for the production process that regulates the in-
puts and outputs proportionally. To solve this prob-
lem, Bian et al.'” have constructed a non-radial DEA
model whose inputs and outputs can be regulated pro-
portionally .

2.3 Non-radial DEA model

Now we introduce the nonmradial DEA model

containing non-Archimedes infinite small value €.

m P

minlz ei*LZBi*Q(e}:DSIPJFeTS)a
mi= P =

ZK;xU—F Sip= Gng;, i=12 - m,

=1

20— S = By, [= 12 s

j=1

2o =1

J=1

h =0, J=12 -n,
Swps S =0,
0<< 0: <1, i=12 - m,
B=1 [=1,2 = s
er= (1, 1) € R",
e= (1, D" € R

Theorem 1. The optimal solutions of this pro-

gramming problem are 0: i=1, - m, Bj*v =1
2, oy S, S,;, S ", and when 9;:1, i=1, - m,

Bj*: I, j=1, -5 s, S;:S *:0, DM U; is correc-

tion efficient for DEA.
Proof. See the footnote.

Theorem 1 gives a method for determining
whether DM U is effective when the inputs and out-
puts are regulated proportionally.

2.4 The prediction model of DEA

Consider how to predict the effective outputs of
the new DM U when there are a group of inputs and
outputs of » DM U and an input of a new DM U. Its
algorithm is as follows:

Let Xux ns Yg<n be the matrix composed of in-
puts and outputs, respectively, Xo be the input of the
new DM U, Yg be the unknown outputs to be pre-
dicted. First of all we construct the following s pro-
gramming problems:

maxyio i=12, s
Ekjyij_yio: 09 1= 1929 ttte Sy
=1

Aixij < Xior i=1,2 - m
s.t.y j=1 ’
>\j: 1,
Jj=1
AJ>O9 j:172?"'7n.

Resolving these problems respectively, we can
get the ideal point of Yo:

Yo‘ = Gioe J’26’ Vo)

Secondly, we can set up a model containing weight:

N 10 n
maXE pall here Y; = Lzm
= Y n =

2 Ayi—vio=10, i=12, s,
j=1

[ = 1,2, ’
(D)s. t. ! "

n
2 Nixij < Xi0,
j=1

2 ;\j - 19
J=1

— J=1,2, - n.

The optimal solutions of the linear programming mod-

el (D) are yi4s ¥Y24» **» Ysa. Combining these two
steps we get s+ 1 groups of outputs, which is the
output vector of the jth DM U.

1) Bian, F.P. et al. The prediction model of DEA with undesirable outputs. Systems engineering-theory applications.
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3 The DEA analysis in metabolic reaction
networks

For the metabolic reaction networks in Fig. 1,
we analyzed the optimal network regulatory architec-
tures by using the prediction model of DEA, consid-
ering four enzyme expression levels Pi, Pz, P3, Ps
as inputs and intermediate product concentration x
and final product concentration x» as outputs, and
constructed DM U by using prediction model of DEA .
We determined if the reaction pathway in Fig. 1 is op-
timal according to the efficiency of DM U and then
constructed 4X 2 input matrix and 2X 2 output ma-
trix;

Py Pp
Pz P2 Xu Xn
Pyor= ,  Xoaxo= .
s P3 Px» > [le Xzz-|
Pa Pu

The elements of the ith column in Psx are the
level of enzyme of the ith reaction pathway, i=1, 2.
The first row and the second row elements of the ith
column in X»x 2 are the intermediate product concen-
tration and final product concentration of the ith re-
action pathway, respectively.

Substituting the data of Py, P2 P3, P4 and
X1, X2 into the matrixes above after solving the

MILP model twice, we have

1 10
C2.236 1 __[500 500
Poc=| L T s 1l
1 1

Now, we predict the optimization of the third
reaction pathway by constructing DM Uy, letting the
level of 4 kinds of enzymes (P, Py, P3, P4)= (1,1,
1,5./2) be the inputs, and predicting its optimal out-
puts.

According to the steps of the predicted algo-
rithm, the first step is setting up s programming
problems as follows:
maxy 1o

500X +500A,— yi0= 0,
1254 +111.8A0%— yxn = 0,
A 100 < 1,

2.236A1+ A2 << |,

>\1 + >\2 =1
(Ai=02=0

(Dps.t.

max}y»20
500>\1+500>\2*y10: 0,
1250+ 111.8A,— y20 = 0,
A+ 102 < 1,

2.2360 + < 1,

Mt =1,

K>\1>O, A= 0.

(D2)s. t.

Solving the model (D;) and model (D2) (calcu-
late them by using the linprog function in Matlab ),
we get the optimal point of Xp: X, = (500, 125).

The second step is constructing the model con-
taining weight:

Y10 4 120
‘“X%6m+mm %u%+an
500 >\1+500>\2*y10: 0,
125X,+111. 8A—y20=0,
N 1001,
Dy)s.t.{ - 2=

2.236A 11 <1,
>\1+ >\2: 1,
>\1>O9 )\2>0.

The optimal solution of the model (D3) is (500,
125).

In summary, itis clear that the optimal produc-
tion of the third reaction pathway is (500, 125). This
conclusion is the same as the optimal production with
multiple construction MILP in Ref. [ 4] .
duction calculated from S-system model is, however,

The pro-

(100, 5). Obviously, this pathway is not optimal.
The prediction DEA model calculation used in this pa-
per is simpler than MILP. For the reaction in which
more than three pathways exist, we can reset the en-
zyme expression levels and regulatory architectures
list the prediction DEA model several times, and pre-
dict the new reaction pathway, and iterate like this
until we obtain an optimal reaction pathway.

4 Conclusion

This article constructs the efficient DM U by us-
ing given inputs (evels of enzyme) and predicted out-
puts (concentrations of products). It resolves the pre-
dicted optimal outputs and compares them with the
actual value of the outputs. Through observing the
optimization of the reaction, we confirmed whether
or not to regulate manipulated parameters and recon-
structed predicted, DEA model. Due to the simplicity
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of predicting DEA model and the possibility of calcu-

lating them using the given procedure, the amount of

calculation is reduced dramatically, indicating that
this method is feasible.
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